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NEW iNTERPRETATlONS 

Stochastic Formulation of the General 
Differential Difference Equation’for 
Addition-Growth Kinetic Processes- 
Example of Anionic Polymerization 

SUMMARY 

In an effort to lend some insight into the probabilistic nature of step- 
growth kinetic processes, the differential rate expression for anionic 
polymerization with one rate constant is derived from stochastic theory. 

INTRODUCTION 

A typical addition-growth process is the anionic polymerization of sty- 
rene with n-butyllithium in 1,2-dimethoxyethane [ 13 . The reaction is 
characterized by a very fast rate of initiation followed by stepwise addi- 
tion of monomer to growing chains (propagation). If scrupulous care is 
taken to eliminate impurities, no termination of the active chains occurs. 
The product of such a reaction is thus termed “living polymer.” The 
mechanism is depicted below. 

0 0  ki 
Initiation n-BuLi + CH2 = CH ---+ n-Bu-CH2 CH Li 

0 0  
Propagation - CH2 CHLi + CH2 = CH __f <H2 CH-CH2 CH Li kP 

0 0  

1617 
Copyright 0 1969, Marcel Dekker, Inc. 
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1618 NEW INTERPRETATIONS 

For this example, ki is much greater than kp so that initiation is essen- 

Anionic polymerization in which each growth step is governed by a 
tially complete before polymer growth proceeds. 

single rate constant is defined by the mechanism below: 

where Cn is the molar concentration as a function of time of polymer con- 
taining n units, and M is the molar concentration of monomer as a function 
of time. The rate expression for Cn is obtained by assuming that the reac- 
tion rate of each step in the mechanism is proportional to the first power 
of the product of the concentrations of each species reacting in that step. 

- -  dCn - kMCn-I - k M C n ; n > 2  
dt 

This rate expression was solved many years ago [ l ]  to yield a Poisson 
distribution for Cn. 

One purpose of this paper is to relate the formal assumptions of sto- 
chastic theory to the assumptions of the classical kinetic approach. For 
example, Eq. (1) was obtained by assuming each step in the mechanism 
was a second-order reaction. "his assumption is interpretable through 
the stochastic approach and arises because each step in the polymerization 
model involves a bimolecular reaction of molecules which have statistically 
independent reaction paths. 

There exists a large body of literature on stochastic processes describing, 
for example, population growth, reactions of small numbers of small mole- 
cules, and various chain reactions. The stochastic formalism introduced 
here for the simplest chain reaction will perhaps serve as an introduction 
to this literature. 
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NEW INTERPRETATIONS 1619 

STOCHASTIC FORMULATION 

Let us define an event as the process of adding one monomer unit to 
the end of a growing polymer chain in an anionic polymerization charac- 
terized by a single rate constant k. 

We can completely define this anionic polymerization by three assump- 
tions: 

(1) Anionic polymerization is a process occurring in time in which 
events (defined in the first paragraph) occur randomly. 

(2) The probability of occurrence of an event in an interval of time is 
not a function of time. That is, the probability of occurrence of a single 
event in the interval (t, t + At), is: 

Pi [t, t t At] = Xi At t O(At) ( 2 )  

The parameter O(A) (read “order of At”) means a function which is of 
smaller order of magnitude than At, that is, 

We require only that X be a positive constant. The relation between A 

(3) The probability of a total of two or more events occumng in the 

The probability of n occurrences in the interval (0,t) is the probability 

and the rate constant for propagation, k, is discussed later. 

time period (t, t + At) is O(At). 

of forming a polymer chain of n links after the polymerization has pro- 
ceeded for a time t. We call this probability Pn(t). Furthermore, 

where Cn(t) = concentration of polymer containing n monomer units in 
moles/liter at a time t. - 

where I’ is the initiator concentration at zero time and I is the initiator 
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1620 NEW INTERPRETATIONS 

concentration at any subsequent time. Since we assumed instantaneous 
initiation 

We set out to obtain an expression for Pn(t). In a very general setting 
we can write that 

n 
Pn(0,t + At) = Prob. [k occurrences in (t, t + At), n - k occurrences 

(3)  
k = O  in (041 

Assumption (1) requires that the occurrence probabilities in Eq. (3) 
must be statistically independent. Therefore, 

n 
Pn(0,t + At) = Prob. [k Occurrences in (t, t + At)] X Prob. [n - k 

k = O  occurrences in (0,t)l 
(4) 

To evaluate all the terms in the sum in Eq. (4) we need Eq. (2) and a 
formal statement of assumption 3. 

Pl(t ,  t t At) = h At + O(At) (2) 

where PI (t, t t At) is the probability of adding one monomer unit to the 
growing chain in the time interval At. 

where P2  or more (t, t + At) is the probability of adding two or more 
monomer units to the growing chain in the time interval At. 

Po (t, t + At) = 1 - Pi (t, t + At) - P2 or more (t, t + At) (6)  

where Po (t,  t t At) is the probability of adding zero monomer units in the 
time interval At. 

Po (t, t + At) = 1 - M t  - O(At) (7) 
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NEW INTERPRETATIONS 1621 

The left-hand side of Eq. (4) is the probability that polymer with n links 
is present in the system at time t + At. This could have been accomplished 
by having polymer with n links at time t and no  monomer addition in At, 
polymer with n - 1 links at time t and one monomer addition in At, or 
polymer with n - k (k 2 2 )  links at time t and k monomer additions in At. 
The right-hand side of Eq. (4) can thus be easily expanded as follows: 

P,(O,t + At) = Po (t, t + At) X Pn(t) 

+ PI (t, t + At) X Pn - I(t) 

Prob. [n - k occurrences in (O,t)] 

Substituting the definitions for P1 (t, t + At), P2 or more (t, t + At), 
and Po (t, t + At) from Eqs. (2), (5), and (7) into Eq. (8) yields: 

Pn (t + At) = [ l  - h a t  + O(At)] Pn(t) + [hAt + O(At)] Pn - I(t) 

(9 ) 
n 

k =  2 
+ O(At) C Prob. [n - k occurrences in (0,t)l 

The terms involving O(At) in Eq. (9) are grouped together for 
convenience 

Prob. [n - k occurrences in (0,t)l (1 0) 

Next we transpose Pn(t) to the left side of Eq. (10) and divide both 
sides by At. 
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1622 NEW INTERPRETATIONS 

Pn(t + At) - P,(t) -ha t  Pn(t) + Mt Pn - i(t) - - 
At At 

+- '(At) Prob. [n - k occurrences in (0,t)l 
At k = 2  

When one takes the limit as At + 0 of both sides of Eq. (1 I), the left 
side thus obtained is recognizable as the definition of a derivative from the 
calculus. The At term cancels the first term on the  right-hand side, and 
the other two terms vanish since 

'(At) lim - = 0. 
At + 0 At 

The differential difference equation thus obtained is shown in Eq. (12). 

If we identify the parameter h as: 

X = kM (13) 

where k is the rate constant for propagation and M is the monomer con- 
centration (assumed to be independent of time), then Eq. (12) represents 
the rate expression for anionic polymerization with constant monomer 
concentration. 

If the reduced time 7 is defined as: 

t 

0 

7 = J M(t)dt 

then the stochastic formalism developed earlier can be cast in terms of 7 ,  

and one obtains the differential difference equation: 
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NEW INTERPRETA TIONS 1623 

where 

Equation (15) represents the genera1 rate expression for anionic polymeriza- 
tion with a single rate constant. 

[3] yields the Poisson distribtuion in t or T ,  respectively. 
Solution of Eqs. (12) or (15) by induction [2] or a generating function 

DISCUSSION 

The assumptions used to obtain Eq. (12) are those required t o  define a 
Poisson process in time, so called because the solution of Eq. (12) leads, as 
we have seen, to a Poisson distribution in time. Other examples of Poisson 
processes are radioactive decay and the simple birth model for population 
genetics [4]. 

The stochastic formalism is not often taught in a chemical kinetics 
course. The details of this simple addition-growth kinetic scheme have been 
presented here as an illustration of the probabilistic origin of simple-rate 
expressions. 
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